

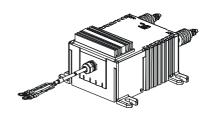
Voltage Transducer CV 4-4000/SP4

For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

Electrical data

$oldsymbol{V}_{PN} \ oldsymbol{V}_{PM}$	Primary nominal voltage rms Primary voltage, measuring range		2800 0 ± 40	000	V V
I_{SN}	Secondary nominal current rms @ V _{PN}		70		mΑ
\mathbf{K}_{N}	Conversion ratio		2800 V/70 mA		
$\mathbf{R}_{\mathrm{M}}^{\mathrm{n}}$	Measuring resistance		$\mathbf{R}_{M\ mini}$	R _{M max}	xi
	with ± 24 V	@ $\pm 2800 V_{maxi}$	50	100	Ω
		@ ± 4000 V maxi	50	70	Ω
\mathbf{V}_{c}	Supply voltage (± 10 %)		± 24		V
Ic	Current consumption		50 + I _s		mΑ

Accuracy - Dynamic performance data


			Max	
\mathbf{X}_{G}	Overall accuracy @ V _{P max}	$T_A = 25$ °C	± 0.40	%
		- 40°C + 70°C	± 1.00	%
I_{\circ}	Offset current @ $\mathbf{V}_{P} = 0$	$T_A = 25$ °C	± 0.10	mΑ
		- 40°C + 70°C	± 0.25	mΑ
t _r	Response time 1) to 90 % of V _{PN} step		≅ 5 0	μs
BW	Frequency bandwidth (- 3 dB) @ 50 % of $\mathbf{V}_{\scriptscriptstyle{\mathrm{PN}}}$		DC 6	kHz

General data

$T_{_{A}}$	Ambient operating temperature	- 40 + 70	°C	
T _s	Ambient storage temperature	- 50 + 85	°C	
P	Total primary power loss @ V _{PN}	2.8	W	
$\mathbf{R}_{\scriptscriptstyle 1}$	Primary resistance	2.8	$M\Omega$	
m	Mass	750	g	
	Standards	EN 50155: 19	EN 50155: 1995	

Note: 1) With a dv/dt of 1000 V/µs.

$V_{DN} = 2800 \text{ V}$

Features

- Closed loop (compensated) voltage transducer
- Insulated plastic case recognized according to UL 94-V0
- · Patent pending.

Special features

- $I_{SN} = 70 \text{ mA}$
- $V_C = \pm 24 (\pm 10 \%) V$
- $X_G = \pm 0.40 \%$
- T_A = -40°C .. + 70°C
- Connection to secondary on M5 ring tongue crimps.

Advantages

- Excellent accuracy
- · Very good linearity
- Low thermal drift.

Applications

- Single or three phases inverter
- Propulsion and braking chopper
- Propulsion converter
- Auxiliary converter
- Battery charger.

Applications Domain

• Traction.

Voltage transducer CV 4-4000/SP4

Isolation characteristics			
V _d	Rms voltage for AC isolation test, 50/60 Hz, 1 mn	9.5	kV kV
V _e	Partial discharge extinction voltage rms @ 10pC	3.75 Min	KV
dCp	Creepage distance	185.1	mm
dCl	Clearance distance	118.5	m m
CTI	Comparative Tracking Index (Group I)	600	

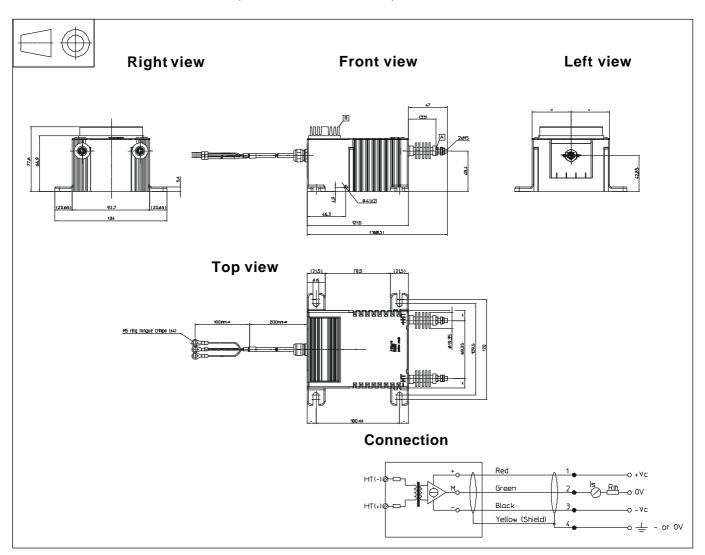
Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.


This transducer is a built-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions CV 4-4000/SP4 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance ± 0.5 mm

• Fastening of transducer 4 slots Ø 6.6 mm

4 steel screws M6

Recommended fastening torque 5 Nm or 3.7 Lb. -Ft.

M5 threaded studs

• Connection of primary

Connection of secondary

Recommended fastening torque 2.2 Nm or 1.62 Lb. -Ft.

4 M5 ring tongue

crimps

Remark

• I_s is positive when V_P is applied on terminal +HT.